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Abstract

Models predicting aqueous solubility of benzylamine salts were developed using multivariate partial least squares (PLS) and artificial
neural network (ANN). Molecular descriptors, including binding energy (BE) and surface area of salts (SA), were calculated by the use of
Hyperchem and ChemPlus QSAR programs for Windows. Other physicochemical properties, such as hydrogen acceptor for oxygen atoms,
hydrogen acceptor for nitrogen atoms, hydrogen bond donors, hydrogen bond forming ability, molecular weight (MW), and calculated log
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artition coefficient (clogP) of p-substituted benzoic acids, were also used as descriptors. In this study, the predictive ability o
specially multilayer perceptron (MLP) architecture networks, was founded to be superior to PLS models. The best ANN model
-1-1 architecture, had an overallR2 of 0.850 and root mean square error (RMSE) for cross-verification and test set of 0.189 and 0
nits, respectively. Since all the utilized descriptors are readily obtained from calculation, these derived models offer the advan
equiring the experimental determination of some descriptors.

2004 Elsevier B.V. All rights reserved.
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. Introduction

Aqueous solubility is one of the most important physico-
hemical properties that plays a significant role in various
hysical and biological processes and has a marked impact
n the design and pharmaceutical formulation development.
or weak electrolyte drugs, salt formation is a common ap-
roach to improve its solubility, since it is a much simpler
ethod than complex molecular modifications. Using differ-
nt counter-ions can result in salts with difference in physico-
hemical properties. Until now, various organic and inorganic
alts of acidic and basic drugs have been prepared and their
hysicochemical properties were subsequently determined in
rder to aid the selection of the most suitable salt for drug
evelopment[1,2].
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Numerous in silico based methods for prediction of
ubility of organic compounds have been developed[3–9].
Nevertheless, the quantitative structure–property rela
ship (QSPR) methods enabling prediction of solubility
salts are less well investigated. There was a study con
ing QSPR of salt solubility indicating that no correlat
was found between diclofenac salt solubility and any
parameter of either pKa, hydrophilicity, or melting poin
of counter-ions[1]. Parshad et al. have recently repor
models for predicting aqueous solubility of benzylam
salts, and their best models using different set of des
tors gaveR2 of 0.82 andQ2 of 0.72 for training set, an
R2 of 0.74 andQ2 of 0.72 for test set[10]. Intrinsic dis-
solution rate, intrinsic solubility of unionized acids, Ch
ton’s steric parameter, Hansch hydrophobic parameter
molecular weight (MW) were reported as important
scriptors for their derived models. Nevertheless, som
the utilized descriptors are based on experimental me
rement.
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Salt solubility is a complex process, and one important
factor that might govern aqueous solubility of salts is the
electrostatic interaction between cationic and anionic species
of the ion pair. The models for predicting aqueous solubility
of diclofenac salts based on calculated structural descriptors
and binding energy (BE) have previously been developed us-
ing partial least squares (PLS) regression[11]. PLS is a linear
technique that can determine the relative importance of de-
scriptors. However, some nonlinear relationships may involve
in salt solubility. Artificial neural network (ANN), which
is capable to recognizing nonlinear relationships, is usually
used to generate QSPR models. Over the past few years, ANN
models have been successfully employed in various aqueous
solubility prediction studies[12–15]. The objective of this in-
vestigation is to model experimentally determined solubility
of salts from computationally derived molecular descriptors,
and to compare the predictive performance of PLS and ANN
methods. The same set of salts from Parshad et al. was em-
ployed in this study[10].

2. Methods

2.1. Data set
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(Hb) is the sum of hydrogen bond numbers of various groups
including oxygen hydrogen bonding acceptor (HaO), nitro-
gen hydrogen bonding acceptor (HaN), and hydrogen bond-
ing donor (Hd) was calculated as described by Xia et al.
[18]. The logP value of acid was calculated directly from
the molecular structure using the ClogP program (Biobyte,
CA, USA). The values of these descriptors are presented in
Table 1.

2.3. Statistical analysis

The software package used for conducting PLS analy-
sis was Unscrambler 6.01 (Computer-Aided Modelling A/S,
Trondheim, Norway). PLS is a bilinear modeling technique
where information in the descriptor matrixX is projected onto
a small number of underlying (“latent”) variables called PLS
components, referred to as PCs. The matrixY is simultane-
ously used in estimating the “latent” variables inX that will
be most relevant for predicting theY variables. All descrip-
tor variables were preprocessed by autoscaling, using weights
based on the variables’ standard deviation and the data were
mean-centered prior to PLS processing. The number of sig-
nificant PCs for the PLS algorithm was determined using the
cross-validation method. With cross-validation, some sam-
ples were kept out of the calibration and used for prediction.
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Aqueous solubility data for the 22 benzylamine salts w
aken from Parshad et al.[10]. These values were conver
rom mM to logarithm of salt solubility (logS). The solubili-
ies of these benzylamine salts ofp-substituted benzoic aci
re listed inTable 1.

.2. Molecular modeling and descriptor calculation

Molecular modeling calculations were performed us
yperChem 5.1 for Windows (Hypercube, FL, USA). T
M+ molecular mechanics force field was first run to

lose to the optimized geometry. The conformation obta
rom molecular mechanics was subjected to a refined
metry optimization using the PM3 semiempirical quan
hemistry.

Binding energy was calculated as previously descr
11,16,17]. In brief, the salt/ion pair constituted by the b
ylamine cation and the negatively chargedp-substituted ben
oic acid was calculated to obtain the total energy of ion
TEion-pair). The interaction energy of the ion pair (Einteraction)
as computed as the difference between the total en
f the ion pair and the sum of the energy of benzylam
Ebenzylamine) and organic acid (Eacid). The negative of th
nteraction energy is termed as binding energy:

interaction= TEion − [Ebenzylamine+ Eacid]

E = −Einteraction

The ChemPlus QSAR Properties 1.5 (Hypercube,
SA) was employed for further calculation of the surf
rea of the salts. Hydrogen bond-forming ability of the a
he process was repeated so that each of the sample
ept out once. The predicted values of left-out samples
hen compared to the observed values using prediction
um of squares (PRESS). The PRESS obtained in the
alidation was calculated each time that a new PC was a
o the model. The optimum number of PCs was conclude
he first local minimum in the PRESS versus PC plot. PR
s defined as

RESS=
n∑

i=1

(ŷ − y)2

hereŷ is the estimated value of theith object andy is the
orresponding reference value of this object.

ANN was also used to estimate the functional rela
etween the molecular descriptors and the solubility. Th
antage of ANN is the inclusion of nonlinear relations in
odel. In this study, ANN calculations were performed w
tatistica 6.1 (Stat Soft, OK, USA). This program can se
utomatically for the optimal type/architecture of ANN s
s multilayer perceptrons (MLP) and radial basis func
RBF). It can also select the number of input variables
idden units, and the settings of various control paramet

he training algorithms that can affect the final performa
f the network to fit a particular data set.

This study, the training algorithms used to optimize
etwork included back propagation and conjugate gra

or MLP, andK-means,K-nearest neighbor as well as pseu
nvert for RBF. The data set was divided into three sub
he training, selection, and test sets. The number of
ounds in the training, selection and test sets was 12, 5
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Table 1
Solubilities, physicochemical, and molecular parameters ofp-substituted benzoic acids and their benzylamine salts

Compound no. R S(mM)a logSb HaOc HaNd Hde Hbf clogPg BEh SAi MWj

1 H 839 2.924 4 0 1 5 1.885 120.93 476.92 122.04
2 CH3 145 2.161 4 0 1 5 2.384 122.99 504.69 136.15
3 C2H5 98.2 1.992 4 0 1 5 2.913 108.77 508.56 150.17
4 C3H7 59 1.771 4 0 1 5 3.442 124.21 562.92 164.08
5 i-C3H7 97 1.987 4 0 1 5 3.312 122.85 554.01 164.08
6 C4H9 38.9 1.590 4 0 1 5 3.971 124.17 594.31 178.10
7 t-C4H9 35 1.544 4 0 1 5 3.711 123.92 571.26 178.10
8 C6H5 12.8 1.107 4 0 1 5 3.773 121.14 584.67 198.07
9 Cl 120 2.079 4 0 1 5 2.696 120.49 505.61 156.00

10 Br 85.4 1.931 4 0 1 5 2.846 119.74 514.23 199.95
11 I 33.9 1.530 4 0 1 5 3.106 119.98 518.99 247.93
12 OCH3 306 2.486 6 0 1 7 2.023 122.80 518.13 152.05
13 OH 138 2.140 6 0 2 8 1.557 122.61 488.38 138.03
14 NO2 77.6 1.890 8 0 1 9 1.838 113.68 513.84 167.02
15 CH2OH 964 2.984 6 0 2 8 0.847 123.52 519.70 152.05
16 CN 256 2.408 4 1 1 6 1.545 117.07 509.36 147.03
17 NH2 272 2.435 4 1 3 8 1.042 123.24 491.97 137.05
18 NH(CH3) 231 2.364 4 1 2 7 1.730 123.15 520.52 151.06
19 N(CH3)2 62.6 1.797 4 1 1 6 2.275 122.15 549.55 165.08
20 CF3 29.3 1.467 4 0 1 5 2.940 117.03 520.30 190.02
21 SO2NH2 110 2.041 8 1 3 12 0.452 115.93 550.38 201.01
22 CONH2 118 2.072 6 1 3 10 0.702 118.51 528.32 165.04

a Salt solubility (mM).
b Logarithm of salt solubility.
c Number of hydrogen bond acceptor oxygen atoms ofp-benzoic acid derivatives.
d Number of hydrogen bond acceptor nitrogen atoms ofp-benzoic acid derivatives.
e Number of hydrogen bond donor atoms ofp-benzoic acid derivatives.
f Hydrogen bond formation ability ofp-benzoic acid derivatives.
g Calculated logP of p-benzoic acid derivatives.
h Binding energy of salt.
i Surface area of salts (A2).
j Molecular weight ofp-benzoic acid derivatives.

5, respectively, and the compound for each set was randomly
selected. The neural networks were trained using the training
subset only. The selection subset was used to keep an inde-
pendent check on the performance of the networks during
training, with deterioration in the selection error indicating
over-learning. If over-learning occurs, the network will stop
training the network and restore it to the state with minimum
selection error. The test set was purely used to check that
the selection error was not artificial. The network model will
generalize if the selection and test errors are close together.
The goodness of fit was evaluated by root mean square error
(RMSE) which is defined as

RMSE=
√

PRESS

n

wheren is number of compounds. Initially, all descriptors
(Table 1) were used as input variables, the number of hidden
units varied from 1 to 4, and a single output was logS.

3. Results and discussion

For predicting aqueous solubility of salt, it is important
that the descriptor set should describe both the interaction
between the ion pair species and the factors that influence
the solubility of each species. The selected descriptors that
might be of importance in modeling in this study are listed
in Table 1. These descriptors include binding energy of salt,
hydrogen bonding parameters of acid, lipophilicity (clogP)
of the acid, surface area of the salt, and molecular weight of
the acid.

The relationship between these calculated descriptors and
logS of 22 salts has been analyzed. The predictive model-
building abilities of two methods, PLS and ANN, were com-
pared.

The PLS model including all descriptors and 22 salts
resulted in the optimal number of seven PCs. The models
showed a high squared correlation coefficient withR2 of
0.858 (RMSE of 0.168), but a low squared correlation coeffi-
cient for cross-validation withQ2 of 0.665 (RMSE of 0.270).
This indicates a fairly good model, but probably low predic-
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Table 2
Prediction profiles and statistical data for certain ANN models

Model no. MLP configurationa Descriptors in modelb OverallR2 RMSEc

Train Select Test

A 6-2-1 HaO, Hb, clogP, BE, SA, MW 0.868 0.166 0.160 0.172
B 6-1-1 HaO, Hb, clogP, BE, SA, MW 0.850 0.164 0.189 0.185
C 6-1-1 HaN, Hb, clogP, BE, SA, MW 0.831 0.196 0.169 0.174
D 4-1-1 HaO, Hb, clogP, MW 0.829 0.196 0.186 0.181
E 5-1-1 HaO, Hb, clogP, SA, MW 0.827 0.161 0.225 0.205

a Input–hidden–output nodes.
b Abbreviations for descriptors are listed inTable 1.
c Number of compounds for training set, selection set, and test set is 12, 5, and 5, respectively.

tive ability for new data. The predictive ability of this PLS
model is slightly lower than the model reported by Parshad
et al.[10].

Although PLS has been achieved in predicting aqueous
solubility of diclofenac salts[11], there may be nonlinear
dependencies of logS of benzylamine salts and this set of
descriptors. A QSPR model based on ANN was thus investi-
gated. A preliminary analysis using all available descriptors
was done to determine the optimal type, the input variables,
and the number of the neurons in the hidden layer. Among
the trained networks, the performance of MLP is better than
RBF, and the resulting MLP models are listed inTable 2.

Compared to PLS analysis, improved predictive perfor-
mance was observed by ANN approaches (models A, B, and
C). The overallR2 are fairly high for all ANN models ranging
from 0.831 to 0.868 and RMSEs for training sets of 0.172 to
0.185. In addition, RMSEs for selection sets which were used
to cross-verify the performances of training algorithms are
low (0.160–0.189). Furthermore, the differences in RMSEs
for selection and test sets are small, reflecting the generaliza-
tion performance and high predictive ability of the networks.

The ratio (ρ) of the number of data points in the training
set to the number of connections in the ANN has been pro-
posed as a criterion for a network size. This ratio should be in
the range of 1.8–2, as when the ratio approaches to 1, the net-
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Fig. 1. Plot of calculated/predicted vs. experimental logS for the training,
selection, and test set compounds used to develop model B.

ous solubility of compounds[21]. In addition to these four
parameters, binding energy between each ion could play an
important role in aqueous salt solubility. By adding BE, ANN
models with good overallR2 and predictive ability can be
developed (models A, B and C). Without BE, the overall per-
formance decreases as shown in models D and E (Table 2).

In conclusion, ANN models with good predictive perfor-
mance for estimating aqueous solubility of salt of the same
basic compound have been developed. The ANN models
were found to be more successful than PLS analysis, reflect-
ing that the relationship between descriptors and solubility of
benzylamine salts is nonlinear. These ANN models include
only the calculated molecular descriptors, which make them
suitable for use in salt designing.
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